Let $ f : X \rightarrow Y $ be a function. If B is subset of y then its inverse image $ f^-B $ is the subset of x define by $ f^-B = {x : f(x) \in B} $ Now prove the following. $ i. B_1 \subset B_2 \Rightarrow f^-B_1 \subset f^- B_1 $ […]
Let $ f : X \rightarrow Y $ be a function. If B is subset of y then its inverse image $ f^-B $ is the subset of x define by $ f^-B = {x : f(x) \in B} $ Now prove the following. $ i. B_1 \subset B_2 \Rightarrow f^-B_1 \subset f^- B_1 $ […]