Let $ F : x \Rightarrow y $ be a function. Then prove that $i. A_1 \subset A_2 \Rightarrow F(A_1) \subset F(A_2)$ $ii. F(\cup_i A_i) = \cup_i F(A_i) $ $iii.F(\cap_i A_i) \subset \cap_i f(A_i)$ Solution $ Let \ f: x \rightarrow y $ be a function. i. $Let\ y \in f(A_1)$ $Then\ \exists x \in […]